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A method is presented to accelerate numerical simulations on parabolic problems using a
numerical code and a Galerkin system (obtained via POD plus Galerkin projection) on a
sequence of interspersed intervals. The lengths of these intervals are chosen according to
several basic ideas that include an a priori estimate of the error of the Galerkin approxima-
tion. Several improvements are introduced that reduce computational complexity and deal
with: (a) updating the POD manifold (instead of calculating it) at the end of each Galerkin
interval; (b) using only a limited number of mesh points to calculate the right hand side of
the Galerkin system; and (c) introducing a second error estimate based on a second Galer-
kin system to account for situations in which qualitative changes in the dynamics occur
during the application of the Galerkin system. The resulting method, called local POD plus
Galerkin projection method, turns out to be both robust and efficient. For illustration, we
consider a time-dependent Fisher-like equation and a complex Ginzburg–Landau equation.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Reduced order models (ROMs) are receiving a continuously increasing attention in the literature due to their interest in
both understanding basic mechanisms of fluid systems [8,15,16] and improving prediction and design in industrial processes
[5,12,21]. Concerning the latter, the need of reducing development time and cost in industry is nowadays enhancing a trend
to substitute wind tunnel experiments by numerical simulations. But traditional numerics are far too slow in multi-param-
eter situations. These are frequent in e.g. aircraft industry [14], where design and certification based on simulations usually
involve many parameters and thus require to perform thousands of runs of complete aircraft configurations.

Proper orthogonal decomposition (POD) combined with Galerkin projection has been used during the last 20 years to obtain
ROMs of evolution problems. The idea is to first identify a low dimensional POD manifold that contains a good approxima-
tion of the true dynamics in an attractor of the system, and then use as ROM a Galerkin system (GS) obtained projecting the
exact equations onto this manifold. A basis of the POD manifold is obtained by the so called method of snapshots [20], which
consists of applying POD methodology to a set of numerically calculated snapshots that span the low dimensional manifold.
Thus, a sufficiently precise numerical code (NC) is needed to calculate the snapshots. Such code must be run over a sufficiently
large time interval, to ensure that the resulting orbit covers a representative part of the attractor, which requires some a pri-
ori knowledge of the attractor dynamics. The method was introduced to obtain ROMs of complex dynamics of incompress-
ible fluid flow problems [4]. The fact that nonlinearity is quadratic in Navier–Stokes equations allowed to obtain a
(quadratic) polynomial GS, whose coefficients are obtained by some preprocessing. The main difficulty is that the resulting
GS may exhibit spurious dynamics in a somewhat unpredictable way. The reason for that is still controversial, but seems to
be due to the fact that the POD manifold is not invariant under the true dynamics. Thus, intended solutions to this difficulty
. All rights reserved.
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relied on the idea of introducing some corrections on the GS, which can be seen as correcting the POD manifold with some
nonlinear terms to make it invariant. This is done either by introducing some additional terms into the GS [7,17] or by cor-
recting the reduced model projecting the error onto the POD temporal eigenfunctions (intrinsic stabilization [11]). An alter-
native way to stabilize the reduced dynamics consists of calculating the truncated dynamics using a few time steps of the
original NC [19]. See also [18] for the effect of time-dependent boundary conditions and [22] for the derivation of ROMs
in stochastic systems. In all these cases, the GS is intended to approach the dynamics of the system on a particular attractor,
which can be periodic, quasi-periodic, or chaotic; turbulent states are the obvious target of such efforts. POD modes were
calculated from the outset, as explained above. Thus, this method will be referred to as the pre-processed POD + Galerkin pro-
jection method.

Our approach is somewhat different, in the sense that our goal is to construct a ROM that approximates any dynamics of
the system. In other words, we do intend to approximate not only attractors but also transients. Our method can also be seen
as a way to accelerate any NC (see [6] for an alternative acceleration procedure based on POD methods) by combining the use
of the NC itself with that of the GS, as in the method proposed in [19]; also, as in [19], we do not restrict ourselves to poly-
nomial nonlinearities.

Let us now anticipate the main ideas behind the method. Assume that we have a time-dependent physical system, gov-
erned by a parabolic equation or system, and a NC to calculate trajectories of the system. Let us apply the NC over a time
interval INC, beginning at t ¼ 0, and select some snapshots on INC, such that they provide a good approximation of the whole
solution in INC. Then, we calculate the most energetic POD modes obtained from these snapshots in such a way that the asso-
ciated POD manifold approaches well the solution in INC. The question is: will such POD manifold still approach the orbit for a
larger time interval? It turns out that the answer is yes. But extending (in time) the validity of the POD manifold requires to
select a few more modes than necessary, as could be anticipated from the expected continuous dependence of the POD man-
ifold on the time interval INC. Then, the basic method to obtain an approximation of the solution in some time span 0 < t < T
can be described as follows:

(i) Take the time interval INC as explained above, select a set of snapshots in this interval, and calculate the resulting POD
modes.

(ii) Project the original parabolic equations onto these modes and integrate the resulting GS over an interval IGS, defined
such that the solution of the GS approaches well the solution of the original NC in IGS.

(iii) Go back to step i in a new time interval INC, to calculate new snapshots and a new set of POD modes.
(iv) Repeat the process as many times as necessary, until the final time, t ¼ T , is reached.

The crucial point is of course to decide in step ii when the GS fails to approximate the true dynamics, and to do that with-
out using the original NC. This can be done using an a priori error estimate that only relies on the assumption that the Galer-
kin approximation converges to the right solution if an appropriately large number of modes are kept. Specifically, in order to
obtain an approximation within an error e, we proceed as follows in step ii. We choose e1 < e (say, e1 ¼ e=100) and select the
first n POD modes such that the root mean square (RMS) distance of the snapshots to the resulting POD manifold is bounded
by e1. These modes will approximate well the orbit in the next Galerkin interval IGS. Then we choose the integer n1 > n such
that the RMS distance of the snapshots to the resulting POD manifold is still smaller than (say) e1=100, and project the ori-
ginal equations into these n1 modes; thus, the order of the Galerkin system is n1. These additional n1 � n modes will be used
to estimate the error of the solution of the GS.

Note that any instability of the Galerkin system produces errors that, once detected by our a priori error estimate, pro-
mote recalculating the POD manifold using a few steps of the numerical code; thus, no additional stabilization procedure (as,
e.g. that presented in [11]) is necessary.

We call this method the local POD + Galerkin projection method because the POD manifold is calculated at each interval INC

using the local dynamics, as done in [19]. Thus, as in [19] we expect that the method will provide a good approximation of the
true dynamics over any time interval, eliminating spurious behaviors. The differences with the method presented in [19] are
that (a) we do not limit ourselves to a given attractor, (b) we use the short runs with the NC to recalculate the POD modes, not to
calculate the GS (which is calculated in a standard way), and (c) our method does not require to pre-calculate the POD modes.

It turns out that the above mentioned error estimate is quite good, and that the resulting method is robust. Namely, the
method can be applied to various parabolic problems and is fairly insensitive to changes in the factor 1/100 appearing above.
These suggest that the ideas in this paper rely on (deeper than the obvious ones) mathematical properties of parabolic prob-
lems, which are ahead of the scope of this paper. Here, we shall limit ourselves to the description and improvement of the meth-
od. In fact, the basic method described above can be improved in various ways that become clear from some simple ideas, which
are inspired on the former work of one of us on related stationary problems on Aerodynamics and thermal systems [1,2,13]:

(a) As described above, POD modes are obtained each time using information from snapshots calculated in the last INC

interval. In other words, available information on POD modes calculated at former INC intervals is not used. On the
other hand, continuous dependence of the local POD manifold on time, and the fact that the POD manifold provided
a good approximation in the last IGS interval, suggest that the POD manifold only suffers a small rotation between two
consecutive INC intervals. Therefore, it is only such rotation that needs to be calculated, which seemingly requires
much less information (namely, shorter INC intervals) than calculating the whole POD manifold.
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(b) Standard Galerkin projection on the POD manifold must be done in each numerical integration step of the GS, which
requires to calculate integrals over the whole computational domain. This could be expensive when the spatial mesh
exhibits a large number of points. But the essence of the method is that the whole set of snapshots is well approxi-
mated by a set of n1 POD modes. Thus, projection of the exact equations on the POD modes should require only infor-
mation from a number of points in the computational domain that is not much larger than n1; in fact, if all calculations
were exact, n1 points should be enough. In some sense, we are using here the same underlying idea that justifies the
method of snapshots. It turns out that projection can be made using a few points, which leads to a computationally
inexpensive way of calculating the right hand sides of the GS.

(c) The method and the improvement described in item (a) rely on the assumption that the POD manifold spanned by the
first n1 modes provides a good approximation of the solution in the next IGS-interval, and that both n1 and n can be
selected from information on the solution in the previous INC and IGS intervals. But it might happen that some transi-
tion occurs in the next IGS interval that is associated with dynamic features of the system that are not present in the
solution in previous intervals. Such transition can be anticipated and the whole approximation can be checked using
the method itself, by running a second GS with n2 > n1 modes and appropriately comparing the solutions provided by
the two Galerkin systems. The resulting test turns out to be quite effective.

(d) As it will be seen in Fig. 5 below, the method is quite robust in connection with the factors e1=e and e2=e1, which have
been taken as 1/100 above. Thus, these factors are to be selected after some simple calibration. Of course, an optimal
choice of these factors could be made, but the benefit of such strategy is dubious. The lengths of the interspersed inter-
vals INC and IGS, instead have a stronger effect in the computational efficiency, and will be selected by the method itself
using simple selection criteria. See the remark at the end of Section 3.

In order to explain and apply the ideas above in a simple way, we shall consider two one-dimensional parabolic equa-
tions, in the spatial interval I ¼�0;1½, namely:

(A) The nonsteady, nonsymmetric Fisher-like (NSNSF) equation
@tu ¼ m@2
xxuþ @xuþ f ðu; tÞ; with u ¼ 0 at x ¼ 0;1; ð1:1Þ

where the state variable u is real, @t ; @x, etc., stand hereafter for partial derivatives, m > 0, and

f ðu; tÞ ¼ 1þ l1 cosðx1tÞ þ l2u cosðx2tÞ � u3; ð1:2Þ

for some real parameters l1; l2; x1, and x2, which will be chosen below. We call this equation nonsymmetric be-
cause of the convective and spatially constant terms, which break the reflection symmetries x! 1� x and u! �u,
respectively. Also, time dependence with two frequencies allows nontrivial large time behavior (at least, periodic
or quasi-periodic). As initial condition, we take

u ¼ 0 at t ¼ 0: ð1:3Þ

This simple equation will be used in the first part of the paper to illustrate both the method and the improvements (a)
and (b) mentioned above. But temporal complexity in this NSNSF equation is limited because it is essentially due to
the time-dependent forcing terms. In other words, complexity is not intrinsic. Thus, the method will be checked apply-
ing it to a second equation that exhibits richer dynamics.
(B) The complex Ginzburg–Landau (CGL) equation,
@tu ¼ ð1þ iaÞ@xxuþ lu� ð1þ ibÞjuj2u; with u ¼ 0 at x ¼ 0;1; ð1:4Þ

which is a well known paradigm of a simple equation that exhibits intrinsically complex dynamics [3]. Here, the state
variable u is complex and the parameters l; a, and b are real. The initial condition (1.3) yields the trivial solution
u ¼ 0. Thus, we impose a nonzero initial condition, namely

u ¼ i sinð2pxÞ þ ð1þ iÞ sinð3pxÞ at t ¼ 0; ð1:5Þ

which is selected such that it is not invariant under the continuous symmetry group of the equation, namely
x! 1� x; u! ueic . This equation exhibits the modulational instability if ab < �1 (Newell’s condition) and l is larger
than a threshold value, which yields complex behaviors at large time.
The NC to integrate (1.1) and (1.4) is constructed discretizing first and second order derivatives with centered differences,
in an equispaced mesh with M0 points; the resulting ODE system is numerically integrated using MATLAB ode15s.

With these ideas in mind, the remaining of the paper is organized as follows. POD methodology and Galerkin projection
are first recalled in Section 2, where some comments are also made for convenience and notation is established. The basic
version of the local POD + Galerkin projection method is described in Section 3, and the three improvements mentioned in
items (a)–(c) above are introduced in Sections 4–6. The paper ends with some summarizing remarks, in Section 7.
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2. Proper orthogonal decomposition, the method of snapshots, and Galerkin projection

Let us consider a real or complex parabolic system, with state variable u, and calculate N snapshots, namely N portraits of
the state of the system at N values of t; t1; . . . ; tN ,
u1 ¼ uðx; t1Þ; . . . ;uN ¼ uðx; tNÞ: ð2:1Þ
Applying POD machinery, we obtain the POD modes and the singular values associated with the snapshots (2.1), denoted as
U1; . . . ;UN and r1 P r2 P � � �P rN P 0: ð2:2Þ
These are calculated from the (Hermitian) covariance matrix R, defined as
Rij ¼ hui;uji; ð2:3Þ
where (unless otherwise stated) we consider the usual L2-inner product and norm
hu1;u2i ¼
Z 1

0

�u1ðxÞu2ðxÞdx; kukL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
juj2 dx

s
; ð2:4Þ
with the overbar standing hereafter for the complex conjugate. POD modes are orthonormal with this inner product, and can
be written in terms of the snapshots as
Uj ¼
1
rj

XN

k¼1

ak
j uk; ð2:5Þ
where ðrjÞ2 are the eigenvalues and ak
j are the eigenvectors of the matrix R, namely
XN

k¼1

Rikak
j ¼ ðrjÞ2ai

j; for j ¼ 1 . . . ;N: ð2:6Þ
Since POD modes are orthonormal, we have
XN

k¼1

�ak
j a

k
l ¼ djl;

XN

k¼1

�aj
ka

l
k ¼ djl; ð2:7Þ
where djl (=1 if j ¼ l and 0 otherwise) is the Krönecker delta.
Using all these, we can obtain the following expression for the original snapshots in terms of the POD modes
ul ¼
XN

j¼1

rj �al
jUj: ð2:8Þ
The POD modes defined as above are such that for each n < N, the expansion (2.8) truncated to n terms provides the best joint
RMS approximation of the snapshots (2.1) among the expansions with n terms. In fact, invoking (2.7) and (2.8) we obtain the
following bound of the square of the L2-error resulting from reconstructing the snapshots using n POD modes
XN

l¼1

kul �
Xn

j¼1

rj �al
jUjk2

L2
¼
XN

l¼1

k
XN

j¼nþ1

rj �al
jUjk2

L2
¼
XN

j¼nþ1

ðrjÞ2; ð2:9Þ
which means that the RMS error when reconstructing the N snapshots after truncation to n modes is
RMS Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j¼nþ1

ðrjÞ2
vuut : ð2:10Þ
Now, the solutions of the original problem are projected onto the POD manifold as
u ’ ~u ¼
Xn

j¼1

ajðtÞUj; with aj ¼ hUj; ui; ð2:11Þ
where we have taken into account that POD modes are orthonormal. The coefficients aj will be called below the amplitudes of
the POD modes.

For convenience, the following notation will be used in the paper. The (instantaneous) spatial error associated with the
expansion (2.11) is u� ~u, where the solution provided by the NC, u, is considered as exact below. This is consistent with the
fact that spatial derivatives will be discretized using the same (finite differences) scheme in both the numerical code and the
Galerkin system. The error can be measured using the L2-norm as
Errorn
L2
¼ ku� ~ukL2

� ku�
Xn

j¼1

ajðtÞUjkL2
: ð2:12Þ
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Now, if Errorn1
L2

is sufficiently small for some n1 > n, then the quantity
En1
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn1

j¼nþ1

ðajÞ2
vuut ð2:13Þ
is a good estimate of Errorn
L2

. This is because if Errorn1
L2

is sufficiently small, then u ’
Pn1

j¼1ajðtÞUj and thus (recall that POD
modes are orthonormal)
ku�
Xn

j¼1

ajðtÞUjk2
L2
’ k

Xn1

j¼nþ1

ajðtÞUjk2
L2
�
Xn1

j¼nþ1

ðajÞ2;
namely En1
n ’ Errorn

L2
. This error estimate is fairly standard (similar to, e.g. the one used in spectral methods for dealiasing [9])

and will play an essential role below.
Let us now project the NSNSF equation (1.1) or the CGL equation (1.4) into the POD manifold. Seeking an approximation of

the solution of the form (2.11), we must substitute this expansion into (1.1) (or into (1.4)) and project (orthogonally) the
resulting equation on the POD manifold, which yields the following GS
a0j ¼ ujða1; . . . ; an; tÞ for j ¼ 1; . . . ;n; ð2:14Þ
where
ujða1; . . . ; an; tÞ ¼ Uj; F
Xn

k¼1

akUk; t

 !* +
; ð2:15Þ
with
Fðu; tÞ ¼ Luþ f ðu; tÞ ð2:16Þ
denoting the right hand side of (1.1) or (1.4). Here L stands for the linear, differential part of F, with spatial derivatives dis-
cretized as in the NC. Thus,
ujða1; . . . ; an; tÞ ¼
Xn

i¼1

‘ijai þ Uj; f
Xn

k¼1

akUk; t

 !* +
; ð2:17Þ
where the matrix ‘,
‘ij ¼ hUj;LUii; ð2:18Þ
can be calculated from the outset, but the second term in (2.17) must be calculated at each step of the numerical integration
of (2.14). Some preprocessing would be also possible in connection with this latter term taking advantage of the fact that
nonlinearity is polynomial (cubic) in the equations considered in this paper, but (a) this would require to calculate a fourth
order tensor, which is fairly expensive, and (b) we intend not to restrict ourselves to polynomial nonlinearities. Also note that
no integration by parts is applied in the right hand side of (2.18) (as sometimes done to reduce the order of the derivatives
appearing in the integrals), which will allow us in Section 5 to substitute the L2-inner product by a more convenient inner
product.

Note that the boundary conditions have not been imposed. This is because the boundary conditions are homogeneous and
hold for all snapshots, which means that they are also satisfied by all POD modes and thus by the expansion (2.11). Nonho-
mogeneous boundary conditions can be accounted for introducing a change of variable that transforms them into homoge-
neous ones.

3. The basic local POD plus Galerkin projection method

In the basic method we proceed as anticipated in Section 1, using the estimate (2.13) of the L2-error (2.12). More precisely,
the basic method consists of the following steps:

(i) To begin with, set t0 ¼ 0.
(ii) Integrate (1.1) with the NC in the interval INC : t0 < t < t1 ¼ t0 þ dNC. Select as snapshots the flow portraits at N equi-

spaced values of t, namely ujðxÞ ¼ uðx; t0 þ jdNC=NÞ, for j ¼ 1; . . . ;N. The number of snapshots, N, should be larger than
the required number of modes (say, N � 2n1 or larger, with n1 as defined below), which requires some calibration.

(iii) Calculate the associated POD modes and singular values, as explained in Section 2. Select the integer n as the smallest
integer such that the RMS error (2.10) is bounded by e=100, namely
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

j¼nþ1

ðrjÞ2
vuut < e1 ¼

e
100

; ð3:1Þ
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and select n1 as the smallest integer such that

n1 P nþ 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j¼n1þ1

ðrjÞ2
vuut <

e1

100
¼ e

10000
: ð3:2Þ
(iv) Consider the GS (2.14) truncated to n1 modes, taking as initial condition at t ¼ t1 the projection on the POD manifold of
the NC solution calculated in step ii at t ¼ t1. Integrate the GS (using, e.g. MATLAB ode15s) monitoring the error esti-
mate En1

n , defined in (2.13), until the last value of t; t2, such that
En1
n < e: ð3:3Þ
(v) If t2 < T , then set t0 ¼ t2, take as initial condition the value of u at t2 reconstructed from the last Galerkin state, using
(2.8), and go back to step ii. Otherwise, the procedure ends.

In order to measure the effectiveness of the method, we define the compression factor as the ratio between the total time
span and the total length of the INC intervals, namely
0 5 10
0

0.5

1

1.5

t

|u
|

NC solution (using a mesh of M0 ¼ 300 equispaced points) of the solution of the NSNSF equations (1.1)–(1.3), with m ¼ 0:1; l1 ¼ 1; l2 ¼ �2; x1 ¼
x2 ¼ 4 at x ¼ 1=2 ( ), x ¼ 1=4 ( ) and x ¼ 3=4 ( ).
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(E
)
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k|
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0
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|
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Results of applying the basic procedure to the NSNSF equation for the same parameter values as in Fig. 1, with e ¼ 10�3; e1 ¼ e=100; N ¼ 20, and
:5. (i) The error estimate En1

n ( ) and the errors Errorn
L2

(–––) and Errorn1
L2

(– �– �–); (ii) the absolute value of the mode amplitudes of the first n
( ) and the remaining n1 � n modes ( ); (iii) the first n ¼ 5 POD modes in the last Galerkin interval and (iv) the absolute value of the
ts (five equispaced of them in each of the two NC intervals).
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Compression factor ¼ TP
dNC

:

For illustration, we apply this basic method to the NSNSF equation (1.1), with initial condition (1.3) and the coefficient values
indicated in the caption of Fig. 1. The NC is constructed as explained at the end of Section 1, with M0 ¼ 300 mesh points. The
solution is illustrated in Fig. 1. Note that since x2=x1 is not rational, such solution is quasi-periodic for large time, and exhib-
its five oscillations in the considered time span. In order to analyze how the basic method works, we plot in Fig. 2 the result
of applying the method with e ¼ 10�3; e1 ¼ e=100, and a length of the INC intervals dNC ¼ 0:5, taking N ¼ 20 snapshots in
each interval. Only two INC intervals are needed, which gives a compression factor of 10; the numbers of modes in the
two INC intervals are ðn; n1Þ ¼ ð7;9Þ and (5,8). The INC intervals are appreciated in Fig. 2(i) because the errors are set to zero
in these intervals; since no Galerkin system is considered in these intervals, plot (ii) exhibits holes in them. The estimate En1

n

is calculated in the IGS intervals using (2.13) and the two errors appearing in this figure are calculated using (2.12) and taking
as u a NC solution satisfying the same initial condition as that applied to the GS. Those results indicate that:

(a) The estimate En1
n of the L2-error with n modes, Errorn

L2
, is quite good (both plots are indistinguishable in Fig. 2(i)). We

intend to maintain this, which is the basic property for the validity of the method. Namely, the method will be con-
sidered to work well if En1

n and Errorn
L2

are undistinguishable within plot accuracy except of course when both are much
smaller than e. Also, the L2-error with n1 modes, Errorn1

L2
, is smaller than Errorn

L2
, which is a further indication of the

consistency of the method. Namely, the approximation with n1 modes is better than that with n < n1 modes; when
the method fails such consistency condition will be violated.
0 10 20 30 40
0
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1

1.5

t

|u
|

0 10 20 30 40

−6

−5

−4

−3

t

lo
g 10

(E
)

Fig. 3. As in Fig. 1 (left) and Fig. 2(i) (right), but with T ¼ 40.
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Fig. 4. As in Fig. 2(i) (e ¼ 10�3; e1 ¼ e=100; N ¼ 20, and dNC ¼ 0:5), but with: (i) N ¼ 50, (ii) N ¼ 16, (iii) dNC ¼ 0:4, and (iv) dNC ¼ 0:7.
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(2) Decreasing dNC to 0.4 (Fig. 4(iii)) worsens our error estimate and leads to the necessity of nine INC intervals, which
decreases the compression factor to 2.77; ðn; n1Þ evolve in the nine IGS intervals from (7,9) in the first interval to
(4,6) in the last interval. The resulting IGS intervals are now too small, which should be avoided. Increasing dNC to
0.7 (Fig. 4(iv)) instead requires only one INC interval, with ðn;n1Þ ¼ ð7;9Þ modes, and thus promotes an increase of
the compression factor, which is now 14.28.

(3) Increasing e1 (but maintaining e) (see Eq. (3.1)) decreases the numbers of modes n1 and n, and slightly worsens our
estimate of the error, as illustrated in Fig. 5(i), where the case e1 ¼ e=20 is considered, which requires
ðn;n1Þ ¼ ð6;8Þ and (5,7) modes in the two INC intervals that are needed. Thus, the compression factor is now equal
to 10.

(4) Requiring less precision allows to decrease dNC, as seen in Fig. 5(ii), where the case e ¼ 0:01 and dNC ¼ 0:4 is considered
which necessitates just one INC interval (a compression factor of 25) with ðn;n1Þ ¼ ð5;8Þ modes. If, instead, e ¼ 10�4

(Fig. 5(iii)) and dNC ¼ 0:5, then the number of needed INC intervals increases to twelve (which decreases the compres-
sion factor to 1.66), with numbers of modes oscillating between ðn;n1Þ ¼ ð8;10Þ and (7,15). Of course, the number of
INC intervals can be decreased taking larger INC lengths, as shown in Fig. 5(iv), where dNC ¼ 0:8, which involves just two
INC intervals (a compression factor of 6.25), with ðn;n1Þ ¼ ð8;11Þ and (7,9) modes.

(5) Decreasing e1 (but maintaining e) increases the numbers of modes n and n1, and improves the accuracy of the error
estimate. This is illustrated with the case e ¼ 10�4; e1 ¼ e=1000, and dNC ¼ 0:5 (Fig. 5(v)), which requires 8 INC intervals
(a compression factor of 2.5), with numbers of modes oscillating between (9,11) and (6,9). As above, the number of INC

intervals decreases as dNC increases, which is illustrated in Fig. 5(vi), where dNC ¼ 0:7 which necessitates only two INC

intervals (which yields a compression factor of 7.14), with ðn;n1Þ ¼ ð9;12Þ and (7,11) modes.
(6) The factor 1/100 in (3.2) can also be changed to 1/50 or 1/200, with consistent results that are not plotted for the sake

of brevity. As expected, increasing this factor too much worsens our error estimate, and decreasing it too much,
increases the number of modes n1, without any benefit for the method.

Summarizing the results above, the basic method easily provides compression factors of the order of 15–20 (in the inter-
val 0 < t < 10 if an RMS error of e ¼ 10�3 is required) and provides a quite good estimate of the error of the GS-approxima-
tion. The method is quite robust concerning the various calibration parameters, namely: (a) the number of snapshots,
provided that this be somewhat large compared to the number of modes (N � 2n1 is a good choice for the NSNSF equation);
and (b) the factors 1/100 appearing in (3.1) and (3.2). The length of the INC intervals instead, must be chosen with care since
slight variations of this can produce large variations in the compression factor. Thus, appropriate selection of the length of
these intervals might produce a significant improvement of the method. This is done in the next section, where a redefinition
of the POD modes after each IGS interval is also made.

4. Using INC intervals to just update the POD manifold

As already pointed out, the calculation of the POD manifold in the basic method described above begins from zero in each
INC interval, ignoring the information about this manifold we already have. A first way of taking former information into ac-
count is to consider as snapshots both (a) those calculated in the last INC interval and (b) the newly calculated ones. It turns
out that such strategy somewhat enlarges the IGS intervals, as intended, but leads to a contamination of the POD manifold;
namely, more POD modes are necessary to approximate the same trajectory. This is due to the fact that the POD manifold
must approximate all snapshots in both the former and the new INC intervals, which means that the dimension of the result-
ing POD manifold increases until the orbit approaches an attractor. In order to avoid that, some filter must be included on
former information about the POD manifold. This is done using the POD modes (instead of the snapshots) calculated in the
last INC interval as modified snapshots for the new calculation of the POD manifold, and multiplying these modes by a weight,
according to the associated mode amplitudes in the last IGS interval. Specifically, instead of the snapshots defined above (see
(2.1)), which were calculated directly from the NC solution, the POD modes for the next IGS interval are calculated from the
following modified snapshots
v1; . . . ;vN1 ;w1; . . . ;wN2 ; ð4:1Þ
which are defined as follows:

(a) The first N1 modified snapshots are the following weighted modes
v1 ¼ ha1iUGS
1 ; . . . ; vN1 ¼ haN1 iU

GS
N1
: ð4:2Þ

where UGS
1 ; . . . ;UGS

N1
are the POD modes used in the last GS interval, and for j ¼ 1; . . . ;N1, the weight haji is the following

average of the associated POD-mode amplitude

haji ¼
1

dGS

Z t1þdGS

t1

jajjdt: ð4:3Þ
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Also, the sequence (4.2) is truncated ignoring those modes such that haji is too small (say, smaller than e1). Thus, we
require that

hajiP e1 for j ¼ 1; . . . ;N1: ð4:4Þ

The weight (4.3) can be seen as a measure of the (square root of the) averaged energy of each mode in the last Galerkin
interval. Without this weight, the less energetic modes in the last Galerkin interval would have the same contribution
to the new POD manifold as the most energetic modes, and the resulting POD manifold would be increasingly contam-
inated, somehow as it happened when the new POD manifold was calculated using all available snapshots.
(b) The last N2 modified snapshots are calculated from N standard snapshots (see (2.1)) computed in the new INC-interval,
u1; . . . ;uN , but modified as follows. First, we calculate the POD modes resulting from these snapshots, UNC

1 ; . . . ;UNC
N , and

then we consider the following modified snapshots
w1 ¼ r1UNC
1 ; . . . ;wN2 ¼ rN2 UNC

N2
; ð4:5Þ

where r1; . . . ;rN2 are the associated singular values and the sequence is truncated requiring thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

j¼N2þ1

ðrjÞ2
vuut <

e1

100
¼ e

10000
: ð4:6Þ
(c) Once N2 has been calculated, the sequence (4.2) is further truncated requiring that N1 < 1þ N2=2. In other words, we
ignore one old POD mode for each pair of new POD modes that is added, which decreases the rank of the vector system
(4.2), neglecting some of the less energetic old POD modes, on the assumption that the relevant dimension of the final
POD manifold does not increase too much suddenly.

Now we are prepared to modify step ii in the basic procedure described at the beginning of Section 3 as follows:

(ii-a) At the end of the first INC interval we proceed as in the basic method.
(ii-b) At the end of each of the remaining INC intervals, we use as snapshots v1; . . . ;vN1 ;w1; . . . ;wN2 , calculated as explained

above, and proceed as explained in step iii.
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As in Fig. 2(i) (e ¼ 10�3; e1 ¼ e=100, and N ¼ 20), but with e ¼ 10�4 and: (i) the method with memory and dNC ¼ 0:5 fixed; (ii) the method with
y, dividing dNC by 2 in subsequent IGS intervals; (iii) the method with memory and adaptive dNC, with dGS;min ¼ 0:5; (iv) the method with memory and
e dNC, with dGS;min ¼ 1.
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The application of this new procedure is illustrated in Fig. 6(i), where the same parameter values as in Fig. 5(iii) are con-
sidered. Applying the modified method explained above requires only three-IGS intervals, which gives a compression factor of
6.66, with ðn;n1Þ ¼ ð8;10Þ, (9,11), and (10,12) modes; recall (see Fig. 5(iii)) that the basic procedure required 12 IGS intervals
and gave a compression factor of only 1.6. This clearly illustrates our main argument above, namely that if the information
about the POD manifold we already have is appropriately used at the end of each Galerkin interval, then the new INC interval
only needs to provide changes in the POD manifold. Thus, if the length of the INC intervals ðdNCÞ is maintained, then the new
modes calculated from the modified snapshots provide a better POD manifold and the number of required INC intervals de-
creases. Also, the INC interval can be shorter than before. In order to illustrate this, we maintain dNC ¼ 0:5 in the first INC inter-
val, but divide it by 2 in each of the subsequent INC intervals; the number of snapshots in each of these INC intervals is also
divided by 2. The result of applying this procedure is plotted in Fig. 6(ii), where the lengths of the three INC intervals are 0.5,
0.25, and 0.125, which gives a compression factor of 11.42, with the same numbers of modes as above.

This shows that it is convenient to decrease dNC after the first INC interval, which will be done in an adaptive way as fol-
lows. To begin with, since the number of snapshots that will be calculated in each INC-interval must be selected at the same
time as the length of the interval, dNC, it is convenient to define the time interval between two consecutive snapshots, dsnaps,
which is taken as dsnaps ¼ ‘=N, where ‘ is the characteristic time of the trajectory, namely the typical time interval in which juj
varies in a quantity comparable to the typical total variation of juj; in the case we are considering, Fig. 1 shows that ‘ � 0:5,
which taking N � 2n1 ¼ 20 as above, gives dsnaps ¼ 0:5=20 ¼ 0:025. Note that dsnaps must be neither too small to avoid enlarg-
ing the number of snapshots without adding information about the dynamics, nor too large, to avoid enlarging the length of
the INC intervals, which increases the computational cost. In addition, we select a minimum value of dGS; dGS;min. Now, the
length of each INC interval and the number of snapshots in the interval, will be calculated in an iterative way as follows:

(i) To begin with, the length of the INC interval in the iterative process is defined as dNC;init ¼ Ndsnaps (with N � 2n1) in the
first INC interval, and dNC;init ¼ dsnaps in the remaining INC intervals.

(ii) Proceeding as in the former method, we use the dsnaps-equispaced snapshots calculated in the INC interval to obtain the
associated POD modes and launch a GS.

(iii) If the resulting value of dGS is larger than dGS;min then such interval is accepted.
(iv) If instead dGS < dGS;min, then we enlarge dNC according to the following simple formula
dNC;new ¼ dNC;old þmax dsnaps;
dGS;min � dGS

dGS;min
dNC;old

� �
; ð4:7Þ

which (after imposing the natural requirement that dNC;new � dNC;old P dsnaps) relies on the rough assumption that the
required value of dNC depends (locally) on dGS as a straight line of slope one; the slope could be of course calibrated,
which will not be done below.
The resulting adaptive method is checked in Fig. 6(iii) with dGS;min ¼ 0:5; dsnaps ¼ 0:025, and N ¼ 20, which requires three
INC intervals, with ðn;n1Þ ¼ ð8;10Þ, (10,12), and (11,16), and dNC ¼ 0:5, 0.025, and 0.025; these give a compression ratio of
18.18. Note that the lengths of the second and third INC intervals are quite small, as anticipated; in fact, dNC ¼ dsnaps in these
intervals, which means that only one snapshot suffices to update the POD manifold in these two intervals, confirming our
argument at the beginning of this section. Enlarging dGS;min enlarges the first INC-interval without significant improvements
in the subsequent intervals, as illustrated in Fig. 6(iv), where dGS;min ¼ 1; now only two IGS intervals are needed, with
ðn;n1Þ ¼ ð8;11Þ and (9,12), and dNC ¼ 1:123 and 0.025, which gives a compression ratio of 8.71. The parameter dGS;min should
be taken neither two small (to avoid a bad approximation) nor too large (to avoid generating too much information at the
very beginning). A value of dGS;min of the order of the characteristic time of the equation is a good selection.

Now the method above, with adaptive INC turns out to be quite effective for the NSNSF equation. A first improvement of
the method, dealing with calculation of the right hand side of the GS, is considered in next section.

5. Decreasing the number of points to calculate the GS

Calculation of the right hand side of the GS in (2.14) requires to compute the integrals appearing in (2.15), whose precise
calculation involves all points in the mesh used to discretize the equation. As anticipated in Section 1, we expect that the
right hand side of the GS (2.15) can be calculated using only information from a few number of points, M, somewhat larger
than the number of modes involved, say M � 2n1. In order to check this statement, we select M equispaced points in
0 < x < 1 and replace the L2-inner product (2.4) by
hu1;u2i ¼
1
M

XM

k¼1

�u1u2: ð5:1Þ
Such new inner product is used both to define the covariance matrix (2.3) and to calculate the right hand side of the GS, in
(2.15), (2.17), and (2.18). Results obtained using this new inner product are presented in Fig. 7, where the cases already con-
sidered in Fig. 6(i), (iv) are recalculated using this new inner product with M ¼ 30. Fig. 7 shows that both the number of INC

intervals and their lengths remain unchanged, as do the number of modes used in each INC-interval. In fact, even the plots of
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Fig. 7. As in Fig. 6(i) (left) and Fig. 6(iv) (right), but using the inner product (5.1), with M ¼ 30 equispaced points.
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the various errors remain almost identical, which shows that the simplification associated with using (5.1) does not involve
any price in the method efficiency.

6. Using a second GS

After the improvements described in Sections 4 and 5, the basic method described in Section 3 turns out to be quite effi-
cient for the NSNSF equation.

Let us now apply it to the CGL equation (1.4), with initial condition (1.5). It turns out that the method works quite well in
some cases, but fails in some other cases, when transitions that are associated with high order modes occur, whose dynamics
are not correctly described by the truncated Galerkin system. In fact, this is the same reason that promotes instability in
standard postprocessed POD + Galerkin methods. As an example to illustrate this, we consider the CGL equation (1.4), with
the parameter values indicated in the caption of Fig. 8. These parameter values have been carefully chosen precisely because
they yield quite unstable transient dynamics. This is illustrated in Fig. 8, where results obtained with the NC, using
M0 ¼ 1000 mesh points are given (in the time intervals 0 < t < 1 and 0 < t < 5) in plots (i)–(ii). The trajectory is seen to ex-
hibit quite complex (chaotic-like) dynamics in the interval 0:3 < t < 2:5, before decaying to a simpler quasi-periodic attrac-
tor, which is stable. If instead a mesh with M0 ¼ 2000 points is used (plots (iii-iv)), then (a) the trajectory remains near the
former trajectory (with M0 ¼ 1000) for 0 < t < 0:45, but both trajectories diverge from each other quite fast for t > 0:45; in
fact, the transient chaotic period shortens with this new mesh, and the trajectory already decays to the quasi-periodic attrac-
tor at t ¼ 1:5. The strong instability of the transient dynamics is further illustrated in plots (v)–(vi), where the M0 ¼ 1000
points mesh is used, as in plots (i)–(ii), but with a quite small term, 0:00001 sinð2pxÞ, added to the initial conditions
(1.5). Note that, again, the trajectory remains close to that in plots (i)–(ii) for 0 < t < 0:45, but both trajectories diverge quite
fast for larger values of t. All these suggest that the chaotic transient behavior observed above might be what is known as
transient chaos [10], which is due to the existence of a heteroclinic-like nearby orbit that converges to a slightly unstable
(hyperbolic) chaotic invariant set. If this were true, a chaotic attractor (yielding dynamics that are similar to those in the
chaotic transient in plot (ii)) should exist for nearby values of the parameters. This is checked in plots (vii) and (viii), where
the case l ¼ 85; a ¼ �2, and b ¼ 14 is considered, and the chaotic attractor is clearly appreciated.

For illustration, some representative snapshots of the spatial structure of the solution, at t ¼ 0:1;1, and 4, are given in
terms of both juj and ReðuÞ in Fig. 9. Note that spatial complexity is not quite high; spatio-temporal complexity instead is
high enough as to require a fairly large number of spatial modes, see below.

Now, in order to illustrate the failure of the local POD + Galerkin projection method developed in Sections 3–5, we apply
this method to the CGL equation (1.4) with initial conditions (1.5) and the parameter values indicated in the caption of
Fig. 8, using M0 ¼ 1000 mesh points, M ¼ 100; N ¼ 100; dsnaps ¼ 0:0005; dGS;min ¼ 0:1, and e ¼ 10�3. The evolution of juj
at x ¼ 1=4;1=2, and 3/4, as in Fig. 1 and the counterpart of Fig. 2(i), are plotted in Fig. 10(i)–(ii), where it is seen that the
method (which requires two INC intervals, with ðn; n1Þ ¼ ð29;38Þ and (28,41)) fails at t ¼ 0:45, precisely at that value of t
where the various trajectories plotted in Fig. 8 diverge from each other. This suggests that the reason for the failure of
the method is that at that value of t dynamics exhibit a highly unstable transition, with new features that were not present
in the snapshots calculated in the first INC interval.

Fortunately, as anticipated in Section 3, such difficulty can be solved using the same ideas behind the method. As we shall
see, these unexpected transitions can be detected comparing the behavior of higher order modes resulting from two Galerkin
systems, namely (a) the one considered above and (b) a second GS with n2 > n1 modes defined such that (cf. (3.1))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

j¼n2þ1

ðrjÞ2
vuut <

e1

100
¼ e

10000
; ð6:1Þ
and, in addition to condition (3.3), requiring (in the definition of each IGS-interval) that the POD amplitudes of this new GS be
such that (cf. (2.13) and (3.3))
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The first condition is the counterpart of (3.3) for the second Galerkin system. And the second one is imposed to require that
the difference between the approximate solution calculated with the first and second Galerkin systems, using n and n2
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Fig. 9. Some representative snapshots of juj and ReðuÞ (at t ¼ 0:1 (–––), t ¼ 1 ( ), and t ¼ 4 ( )) along the orbit considered in Fig. 8(i)–(ii).
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modes, respectively, is appropriately close to our error estimate En1
n . Both conditions are consistent with requiring that the

second Galerkin system provides an approximation within an error e=100.
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The resulting method solves the difficulty, namely stops the GS integration when the former method would fail, as illus-
trated in Fig. 10(iii)–(iv), where the method described above is applied to the case considered in plots (i)–(ii), with e ¼ 10�3

and the same calibration parameters as above, namely M0 ¼ 1000 mesh points, M ¼ 100; N ¼ 100; dsnaps ¼ 0:0005, and
dGS;min ¼ 0:1. Four INC intervals are necessary, with dNC ¼ 0:2978;0:0005;0:0005, and 0.0005, which gives a compression fac-
tor of 3.34 and values of ðn; n1; n2Þ that slightly oscillate around ðn; n1; n2Þ ¼ ð29;38;49Þ. It is noteworthy that all INC inter-
vals, except for the first one, are such that dNC ¼ dsnaps, namely only one new snapshot is enough to correct the POD manifold.
The required number of Fourier modes to expand a typical spatial snapshot within an error bound of e=100 ¼ 10�5 is 40, indi-
cating that (contrary to what happened with the NSNSF equation), our method does not reduce the required number of
modes as compared to a spectral method. This is because due to spatio-temporal complexity of the trajectory, the dimension
of the POD manifold is large. The method works well for larger values of T, as illustrated in Fig. 10(v)–(vi), where the interval
0 < t < 5 is considered. Note that now, 20 INC intervals are needed, with dNC ¼ 0:298 in the first INC interval, dNC ¼ 0:0623 in
the eighth INC interval, and dNC ¼ 0:0005 in the remaining INC intervals (giving a compression factor of 13.54); ðn; n1; n2Þ
oscillate between (25,39,49) and (31,55,62). Note that dNC ¼ dsnaps except in the first and eighth intervals, confirming that
one snapshot is enough in most INC intervals to update the POD manifold, as it happened with the NSNSF equation.

The method is robust in connection with the various calibration parameters (such as the factors 1/100 in (6.1) and (6.2))
and the required RMS error. For the sake of brevity, only the latter is illustrated here in Fig. 11(i)–(ii) and (iii)–(iv), where the
cases e ¼ 0:01 and 0.0001 are considered. In the first case (maintaining the same values of the calibration parameters as
above, namely M0 ¼ 1000 mesh points, M ¼ 100; N ¼ 100; dsnaps ¼ 0:0005, and dGS;min ¼ 0:1), four INC intervals are required
with dNC ¼ 0:1875;0:0005;0:0005, and 0.0005, which gives a compression factor of 5.29, and values of ðn;n1;n2Þ that slightly
oscillate around ðn;n1;n2Þ ¼ ð22;38;46Þ; again, all INC intervals, except the first one are such that dNC ¼ dsnaps. In the second
case (taking N ¼ 150 and maintaining the same values of the remaining calibration parameters), five INC intervals are needed,
with dNC ¼ 0:2685;0:0097;0:0005;0:1185, and 0.0605 which gives a compression factor of 2.18, and values of ðn;n1;n2Þ that
slightly oscillate around ðn;n1;n2Þ ¼ ð34;47;57Þ; note that now, because we are imposing a stronger precision, most of the
INC intervals are such that dNC > dsnaps, and in fact, the last but one INC interval is somewhat large.

For the sake of clarity we summarize here the complete method, after the various modifications introduced above. The
local POD + Galerkin projection method proposed in this paper consists of the following steps:

(i) Select the RMS error bound e, the time interval between snapshots, dsnaps, the initial number of snapshots in the first
INC interval, N, the minimum of the IGS interval lengths, dGS;min, and the number M of mesh points used to define the
inner product (5.1). Select as initial length of the INC intervals below, dNC;init ¼ Ndsnaps in the first INC interval and
dNC;init ¼ dsnaps in the remaining INC intervals.

(ii) To begin with, set t0 ¼ 0.
(iii) Integrate the parabolic equation or system ((1.1) or (1.4)) with the NC in the interval INC : t0 < t < t1 ¼ t0 þ dNC;init.

Select the flow portraits in INC at dsnaps-equispaced points. Now, we have two alternatives:
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Fig. 12. Counterparts of Fig. 10 (v)–(vi), with the parameters of the CGL equation as in Fig. 8 (vii)–(viii), with but withe ¼ 0: 001 and the same values of the

calibration parameters as in Fig. 10 (v)–(vi): (i)–(ii) T ¼ 1; (iii)–(iv) T ¼ 5.
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(a) If we are in the first INC interval, then use as snapshots the N phase portraits above.
(b) Otherwise, consider the modified snapshots defined in (4.1), with v j and wj as given by (4.2) and (4.5).
(iv) Calculate (as explained in Section 2) the POD modes and singular values associated with the snapshots or modified
snapshots obtained in step iii, using the inner product (5.1). Select n; n1, and n2 as the smallest integers satisfying
(3.1), (3.2), and (6.1).

(v) Construct two GSs, retaining n1 and n2 modes, using the expression (2.14) with the inner product (5.1), taking as initial
condition at t ¼ t1 the projections on the POD manifolds of the NC solution calculated in step iii at t ¼ t1. Integrate
both GSs (using, e.g. MATLAB ode15s) monitoring the error estimates En1

n and eEn2
n1

, defined in (2.13) and (6.2), until
the last value of t; t2, such that conditions (3.3) and (6.2) both hold. Now, we have two alternatives:

(a) If the resulting value of dGS < dGS;min, then calculate the new value of dNC according to (4.7), complete the NC

solution in the new part of the interval INC that has been added, and go back to step v.
(b) Otherwise, proceed to next step.
(vi) If t2 < T , then set t0 ¼ t2, take as initial condition the value of u at t2 reconstructed from the last Galerkin state, and go
back to step iii. Otherwise, the procedure ends.

The resulting method is both precise and robust, as has been checked in the CGL equation for various parameter values in
which this equation exhibits complex dynamics. This is illustrated in Fig. 12 for the case considered in Fig. 8(vii)–(viii), in
which the trajectory is chaotic. Note that even though we are approximating a chaotic trajectory, the error estimate is quite
good as in all cases considered above, and that our controls stop the GS system in a quite effective way. As above, most of the
INC intervals are quite short. In fact, the compression factor in the interval 0 < t < 5 is 13.27 and the numbers of modes oscil-
late around ðn;n1;n2Þ ¼ ð26;46;57Þ.
7. Summarizing remarks

A method has been developed to obtain a ROM of a parabolic equation or system that is based on local POD + Galerkin
projection, and is able to accurately describe transient solutions, not only large time behaviors. The method divides the com-
plete time interval into two sets of interspersed intervals, INC and IGS, in which a numerical code (assumed to provide the
exact solution in the context of this paper) and a Galerkin projection are used to approximate the solution. The method, de-
scribed at the end of Section 6, is the result of various basic principles and improvements explained along the paper. The
basic principles result from the following ideas:
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(1) A POD manifold calculated by the method of snapshots in each INC interval contains the dynamics in the next IGS

interval within an error bound e provided that a higher accuracy (say, e=100) is required in the calculation of the
POD manifold in INC. This means that higher order modes contain enough information on the dynamics of lower
order modes in the next future, which is not surprising because of causality: the whole solution would be
completely determined by the equation and initial conditions if infinite precision were possible. Note that we
are only claiming that the POD manifold contains an approximation of the exact solution, not the exact solution
itself.

(2) Each IGS interval finishes when the Galerkin system ceases to approximate the exact solution within an error bound e,
which is decided (without the need of calculating the exact solution) using an a priori error estimate based on higher
order modes. This error estimate is based on the only (consistency) assumption that POD modes describe well the
solution provided that sufficiently many modes are kept. Comparing with the exact error, the error estimate has been
checked to provide quite good results, namely both the exact and the estimated errors coincide within plot accuracy;
see Figs. 2(i), 3(ii), 4, and 5.

A basic method builded upon these principles was described in Section 3 that turned out to work well for the NSNSF equa-
tion, and to be quite robust against perturbations of the various calibration parameters, with one exception: small changes in
the length of the INC intervals, dNC, produce large changes in the results. A better selection of dNC results from the various
improvements that are recalled now:

(3) In the simplest method above, the POD manifold is completely calculated in each INC interval, ignoring any previous
information. On the other hand, the expected continuous dependence of the POD manifold on time suggests that the
POD manifold will suffer only a rotation between two consecutive IGS intervals, and it is only such rotation (and not the
whole POD manifold) that needs to be calculated in the next INC interval. Based on these ideas, a method has been con-
structed in Section 4 to use (after some preprocessing) the information of the POD manifold we already have in con-
junction with the information in the snapshots calculated in the new INC interval, to calculate the new POD manifold in
a computationally efficient way. In this way, all INC intervals, except for the first one, become very short; see Fig. 6(i)–
(ii). In fact, the length of the INC intervals can be chosen in an automatic way, as explained in Section 4; see Fig. 6(iii)–
(iv).

(4) In principle, the right hand side of the Galerkin system used in the IGS intervals involve integrals that must be calcu-
lated in each time step of the numerical integration scheme, which can be a quite expensive process. This is usually
solved in classical POD + Galerkin methods applied to equations exhibiting polynomial nonlinearities by some prepro-
cessing to reduce the Galerkin system to a polynomial system whose coefficients can be calculated from the outset.
But this restricts generality and can still be fairly expensive. Instead, we note that projecting on an n-dimensional
POD manifold could be done using information on a number of points that is somewhat larger than n (say, 2n), which
in general is much smaller than the number of points of the computational mesh. This improvement has been intro-
duced in Section 5, where it has been shown that leads to similar results as when all points in the computational mesh
are used; see Fig. 7.

(5) The basic method, with the improvements outlined above is quite robust and computationally efficient when applied
to the NSNSF equation (1.1), in which temporal complexity only results from time dependence of the nonlinear forcing
term. In particular, our estimate En1

n of the error En
L2

was quite good (both plots are undistinguishable in Figs. 2–6)
except of course when these errors are much smaller than the error bound e.

(6) Application to the CGL equation (1.4) instead produces no so good results. This is because of the inherent temporal
complexity of this equation, whose dynamics can exhibit spontaneous transitions in some IGS intervals associated with
features that could be not present in the former INC intervals that were used to calculate the POD manifold. Such tran-
sitions can be detected using a second Galerkin system. The resulting method works quite well for the CGL equation;
see Figs. 11(iii)–(iv) and 12. Again, our estimate En1

n of the error En
L2

was quite good, see Figs. 11, 12.

The method has been developed somewhat empirically, from the basic ideas above, and checked in two one-dimensional
parabolic problems, the NSNSF equation (1.1), which exhibits somewhat simple dynamics and the CGL equation (1.4), whose
dynamics exhibit spontaneous instabilities. In fact, in the latter case, a set of values of the parameters was chosen in which
the equation exhibited transient chaos, which is the most demanding situation to check the method. The results of the paper
indicate that the method is both accurate and robust, and thus amenable to be applied to many related parabolic equations
and systems, which is the object of current research, as is pursuing various improvements of the method, which are well
ahead of the scope of this paper.
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